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Abstract

The present paper is closely related to a recent work of Bayazitoglu et al. [Y. Bayazitoglu, P.R. Paslay, P. Cernocky, Laminar Bingham fluid flow
between vertical parallel plates, Int. J. Thermal Sci. 46 (2007) 349–357], in which the free convection of a Bingham material in a vertical parallel
plane channel with a constant temperature differential across the walls has been investigated. Our interest is directed on the additional effect of an
external shear, applied on the wall–fluid interface. This forcing shear is induced (in our mathematical model) by a uniform vertical motion of the
hot wall of the channel in its own plane. The physically most interesting five-domain configuration of the velocity field of the resulting buoyant
Couette–Bingham flow is examined in detail. For the initiation temperature of the flow, whose existence has been predicted in [Y. Bayazitoglu,
P.R. Paslay, P. Cernocky, Laminar Bingham fluid flow between vertical parallel plates, Int. J. Thermal Sci. 46 (2007) 349–357], a generally valid
formula is reported. Subsequently, it is shown that the core velocities with rigid body motion depend on the wall velocity sensitively. The hot
and cold cores possess the same width which, however, decreases with increasing wall velocity rapidly. There always exists a critical downward
pointing wall velocity for which the upward motion of the hot core is dropped.
© 2007 Elsevier Masson SAS. All rights reserved.
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1. Introduction

This paper investigates the physical effect of external shear
on the free convection of a Bingham fluid in a vertical parallel
plane channel with a constant temperature differential across
the walls. The additional shear is induced (in our mathemati-
cal model) by a uniform vertical motion of the hot wall of the
channel in its own plane. It is found that the forcing effect of the
applied shear affects both the configuration of the flow field and
the magnitude of the core velocities of a Bingham fluid sensi-
tively.

Our investigation was motivated by a recent paper of Bayaz-
itoglu et al., [1], in which the five-domain configuration of the
free convection velocity field of a Bingham material in a verti-
cal channel with isothermal walls at different temperatures was
examined in some detail. The investigation [1] was performed
with regard to the flow of packer fluids (gels with Bingham be-
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havior) in the annulus between the production tubing and the
first production casing of oil and gas wells. To the description
of the velocity field of the flow, an earlier solution reported by
Yang and Yeh [2] was adapted.

In the free convection case the velocity field is symmetric
with respect to the mid-plane of the channel. In the case of
the present Couette–Bingham flow this symmetry gets broken.
The reason for this feature resides in the non-symmetric veloc-
ity boundary conditions for the channel with a resting and a
moving wall. Accordingly, the average flow velocity Vm (vol-
umetric flow rate) through a section of the (full) channel is no
longer vanishing. It is found that it equals the average veloc-
ity (VL + VR)/2 of the left and right cores with rigid body
motion of the Bingham gel, which in turn equals the average
velocity (vw +0)/2 = vw/2 of the two walls of the channel, i.e.
Vm = (VL + VR)/2 = vw/2.

The paper is organized as follows. In Section 2, the model
of Bayazitoglu et al., [1], is adapted to the no slip boundary
conditions with a moving wall. In Section 3 the solution for the
familiar case of the Newtonian fluid is described shortly. In Sec-
tion 4 the solution for the five-domain configuration velocity
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Nomenclature

C constant of integration that equals the maximum of
shear stress

D constant of integration in equation of velocity
g acceleration of gravity
H distance between plates
KE/VOL average kinetic energy per unit volume
k thermal conductivity of fluid
Gr Grashof number
T ′(x) temperature field
Vm mean velocity in the full channel
VL velocity of the left hot core
VR velocity of the right cold core
v local velocity in y-direction, a function of x

vw velocity of the left hot plate
x coordinate across the gap, x = 0 is at hot plate,

x = H at cold plate

y coordinate along the hot plate
�T temperature differential across plates
β thermal coefficient of volumetric expansion of the

fluid
μ dynamic viscosity
υ kinematic viscosity, υ = μ/ρ

ρ mass density of the fluid
ξ dimensionless transversal coordinate, ξ = x/H

ξn coordinates of interfaces between the five flow do-
mains, n = 1,2,3,4

τxy shear stress in the flowing fluid
τmax maximum shear stress in the flowing fluid
τmin minimum shear stress in the flowing fluid
τ∗ gap between τmax and τmin

τ0 yield point of the Bingham material model
field of the Couette–Bingham flow is given a closed analyti-
cal form. For the initiation temperature of the flow, of which
existence has been predicted in [1], a generally valid formula
is reported. Subsequently, the domain of existence of the solu-
tions, the aiding and opposing effects of the applied shear on
the flow, the effect of the wall velocity on the core velocities
and core-widths, as well as comparison to Newtonian flow are
discussed in Section 5. Section 6 summarizes the main results.

2. Governing equations

Consider the steady two-dimensional natural convection of
a viscous fluid in a vertical parallel plane channel of width
H . The walls are kept at constant temperatures T0 + �T/2
and T0 − �T/2, respectively, and the left (hot) wall moves
with uniform velocity vw in the y-direction (Fig. 1). We exam-
ine the parallel flow regime, in which the only non-vanishing
component of the velocity field is its y-component v = v(x).
Following Bayazitoglu et al. [1], we assume that the Boussi-
nesq approximation holds, and write the balance equations in
the form

−dp′

dx
+ ρgβT ′ + dτxy

dx
= 0 (1a)

v
∂T ′

∂y
= α

(
∂2T ′

∂x2
+ ∂2T ′

∂y2

)
(1b)

where the fluid properties β and α are assumed to be constant
and p′ = p − p0, T ′ = T − T0 are the deviations of pressure
and temperature from their values at hydrostatic condition. The
present no slip and thermal boundary conditions are

v = vw, T ′ = �T/2, x = 0 (2a)

v = 0, T ′ = −�T/2, x = H (2b)

As argued in [1], in the asymptotic state of the long-channel
flow, the gradient of the pressure excess above the static pres-
sure may be neglected and Eqs. (1a,b) of the velocity and tem-
perature distribution reduce to
Fig. 1. Coordinate system and boundary conditions. The left hot wall of the
channel is moving with uniform velocity vw and the right cold one is at rest.

ρgβT ′ + dτxy

dx
= 0 (3a)

∂2T ′

∂x2
= 0 (3b)

It is admitted that Eqs. (3) hold, in a first approximation, also
under the present boundary conditions.

The integration of Eq. (3b) along with the boundary condi-
tions (2) gives the linear temperature distribution

T ′(x) =
(

1

2
− ξ

)
�T (4)

and the integration of Eq. (3a) yields for the shear stress the
expression

τxy = ρ
(

υ
)2

Gr
(
ξ2 − ξ

) + C (5)

2 H
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Fig. 2. Domains of viscous flow and of rigid body motion (“cores”) of the Bing-
ham gel.

where C is a constant of integration and υ denotes the kine-
matic viscosity, υ = μ/ρ. The dimensionless length ξ and the
Grashof number Gr have been defined as follows

ξ = x

H
(6a)

Gr = gβ�T H 3

υ2
(6b)

Eq. (5) shows that C = τxy |x=0 = τxy |x=H . At the same time,
C represents the largest value of τ ,

C = τmax (7)

The minimum of τ is reached for ξ = 1/2 and is

τmin = τ |ξ=1/2 = τmax − τ∗ (8)

where

τ∗ ≡ 1

8
ρ

(
υ

H

)2

Gr = 1

8
ρgHβ�T (9)

represents the gap between the maximum and minimum value
of τxy (see Fig. 2).

3. The Newtonian flow

The familiar case of the Newtonian viscous flow should
serve here as a reference. The shear stress distribution (5) has to
be substituted in this case into the linear viscous flow equation

μ
dv

dx
= τxy = 4τ∗

(
ξ2 − ξ

) + C (10)

Integrating Eq. (10) once, we obtain

v = υGr

12H

(
2ξ3 − 3ξ2) + H

μ
Cξ + K (11)

The constants of integrations C and K can be determined with
the aid of the velocity boundary conditions (2). Thus we ob-
tain for the velocity field and the shear stress distribution of the
Couette flow in the vertical channel the explicit expressions
v = vw(1 − ξ) + υGr

12H

(
2ξ3 − 3ξ2 + ξ

)
(12)

τxy = 2

3
τ∗

(
6ξ2 − 6ξ + 1 − 12Hvw

υGr

)
(13)

Accordingly,

τmax = 2

3
τ∗

(
1 − 12Hvw

υGr

)
(14)

and

τmin = −1

3
τ∗

(
1 + 24Hvw

υGr

)
(15)

In the case of the resting wall (vw = 0), we recover in (12)–(15)
the results of Bayazitoglu et al. [1]. However, in contrast to the
case vw = 0 where the velocity field v(x) shows a geometric
symmetry with respect to the mid-plane ξ = 1/2 of the channel
(v(x) is an odd function of x − H/2), the mean velocity of the
Couette flow through the full section of the channel is not zero
but, as expected, is given by

Vm = 1

H

H∫
0

v(x)dx = vw

2
(16)

The average kinetic energy per unit volume, KE/VOL

KE

VOL
= 1

H

H∫
0

1

2
ρv2 dx (17)

is calculated to be

KE

VOL
= ρ

60 480

(
υGr

H

)2(
1 + 7ε + 70ε2) (18a)

ε = 12Hvw

υGr
(18b)

In this way, Eqs. (16) and (13) yield

KE/VOL

τmax
= Gr

5040

1 + 7ε + 70ε2

1 − ε
(19)

In the case of the resting wall (vw = 0, i.e. ε = 0), we recover
in (17) and (19) the results of Bayazitoglu et al. [1], again.

4. The Couette–Bingham flow

We consider the flow of a Bingham gel of yield stress τ0.
Following Bayazitoglu et al. [1], we focus our attention on the
most interesting physical situation, which is specified by the
inequalities

0 < τ0 < τmax

τmin < −τ0 < 0 (20)

where τmax and τmin are related to the unknown integration con-
stant C by Eqs. (7) and (8) (see Fig. 2). In this way inequalities
(20) require

0 < τ0 < C < τ∗ (21)

The coordinates 0 < ξ1 < ξ2 < ξ3 < ξ4 < 1 of the interfaces
between the viscous flow regions and the cores with rigid-body
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motion of the Bingham material are obtained in this case as
roots of equations τ = τ0 and τ = −τ0, respectively, where τ is
given by Eq. (5). Thus, equation τ = τ0 yields

ξ1 = 1 − S−
2

, ξ4 = 1 − ξ1 (22)

and equation τ = −τ0 yields

ξ2 = 1 − S+
2

, ξ3 = 1 − ξ2 (23)

where S± stand for the square root expressions

S± =
√

1 − τ0

τ∗

(
C

τ0
± 1

)
=

√
1 − 8

(
C

τ0
± 1

)
τ0

ρgH

1

β�T

(24)

The constitutive equations in the five parallel-plane domains of
Fig. 2 are

μ
dv

dx
= τ − τ0 when 0 � ξ � ξ1 (25)

v = VL (left core) when ξ1 � ξ � ξ2 (26)

μ
dv

dx
= τ + τ0 when ξ2 � ξ � ξ3 (27)

v = VR (right core) when ξ3 � ξ � ξ4 (28)

μ
dv

dx
= τ − τ0 when ξ4 � ξ � 1 (29)

Concerning the velocity field of the Couette–Bingham flow,
there occurs an essential difference comparing to the resting
wall (vw = 0) case investigated in [1]. This consists of the fact
that, although the stress distribution (5) due to the buoyancy
forces is symmetric with respect to the mid-plane ξ = 1/2 of
the channel in both cases, in the case of Couette–Bingham flow
the geometric symmetry of the velocity field of the case vw = 0
gets broken. The simple reason for this feature resides in the
non-symmetric velocity boundary conditions (2a) and (2b) for
vw �= 0. Accordingly, in the case vw �= 0 the mathematical ap-
proach may not be restricted to the half-channel 0 � ξ � 1/2 as
being done in [1].

The differential equations (25), (27) and (29), with τ given
by Eq. (5), can immediately be integrated. The constants of inte-
gration occurring in Eqs. (25) and (29) can be determined from
the boundary conditions (2a) and (2b) easily. In this way, we
obtain for the velocity field of the Couette–Bingham flow the
expression

v =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

υ Gr
12H

(2ξ3 − 3ξ2) + H
μ

(C − τ0)ξ + vw

for 0 � ξ � ξ1

VL for ξ1 � ξ � ξ2
υ Gr
12H

(2ξ3 − 3ξ2) + H
μ

(C + τ0)ξ + H
μ

D

for ξ2 � ξ � ξ3

VR for ξ3 � ξ � ξ4
υ Gr
12H

(2ξ3 − 3ξ2 + 1) + H
μ

(C − τ0)(ξ − 1)

for ξ4 � ξ � 1

(30)

where D is a constant of integration.
The continuity requirement of the velocity in the planes
ξ = ξn, n = 1,2,3,4, of the flow field leads to the equations
(matching conditions)

υ Gr

12H

(
2ξ3

1 − 3ξ2
1

) + H

μ
(C − τ0)ξ1 + vw = VL (31)

υ Gr

12H

(
2ξ3

2 − 3ξ2
2

) + H

μ
(C + τ0)ξ2 + H

μ
D = VL (32a)

υ Gr

12H

(
2ξ3

3 − 3ξ2
3

) + H

μ
(C + τ0)ξ3 + H

μ
D = VR (33a)

υ Gr

12H

(
2ξ3

4 − 3ξ2
4 + 1

) + H

μ
(C − τ0)(ξ4 − 1) = VR (34)

These four equations, where the ξn’s are given by Eqs. (22)–
(24), determine basically the four unknown quantities C, D,
VL and VR of the problem in terms of the input data vw, τ0, H

and �T . Having in mind the second equation (22), ξ4 = 1 − ξ1,
the sum of Eqs. (31) and (34) gives the relationship

VL + VR = vw (35)

Similarly, having in mind the second equation (23), ξ3 = 1−
ξ2, the sum of Eqs. (32a) and (33a) leads to the relationship

−υ Gr

12H
+ H

μ
(C + τ0) + 2H

μ
D = VL + VR (36)

which, along with Eq. (35), furnishes for D the expression

D = μ

2H

[
vw + υ Gr

12H
− H

μ
(C + τ0)

]
(37)

Substituting Eq. (37) in Eq. (30), the velocity field becomes

v =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

υ Gr
12H

(2ξ3 − 3ξ2) + H
μ

(C − τ0)ξ + vw

for 0 � ξ � ξ1

VL for ξ1 � ξ � ξ2
υ Gr
12H

(2ξ3 − 3ξ2 + 1
2 ) + H

μ
(C + τ0)(ξ − 1

2 ) + vw

2
for ξ2 � ξ � ξ3

VR for ξ3 � ξ � ξ4
υ Gr
12H

(2ξ3 − 3ξ2 + 1) + H
μ

(C − τ0)(ξ − 1)

for ξ4 � ξ � 1

(38)

Furthermore, on account of Eq. (37), the matching conditions
(32) and (33) become

υ Gr

12H

(
2ξ3

2 − 3ξ2
2 + 1

2

)
+ H

μ
(C + τ0)

(
ξ2 − 1

2

)
+ vw

2
= VL

(32b)
υ Gr

12H

(
2ξ3

3 − 3ξ2
3 + 1

2

)
+ H

μ
(C + τ0)

(
ξ3 − 1

2

)
+ vw

2
= VR

(33b)

There are two straightforward ways to obtain an equation for
determination of C, namely, by combining Eqs. (31) and (32b)
or Eqs. (33b) and (34). Owing to the relationships ξ3 = 1 − ξ2
and ξ4 = 1 − ξ1, these procedures are obviously equivalent and
result in equation

2

3

τ∗
τ0

(
2ξ3

1 − 3ξ2
1 − 2ξ3

2 + 3ξ2
2 − 1

2

)
+

(
1

2
+ ξ1 − ξ2

)
C

τ0

+ 1 − ξ1 − ξ2 + μvw = 0 (39)

2 2τ0H
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In terms of the square root expressions (24), Eq. (39) can be
transcribed in the form

vw = υ Gr

24H

(
2S3+ − 2S3− + 3S2− − 1

)
(40)

Eqs. (31) and (34) of the core velocities can similarly be tran-
scribed in the form

VL = vw

2
+ υ Gr

24H
S3+

VR = vw

2
− υ Gr

24H
S3+ (41)

Once the transcendental equation (40) has been solved for C,
the value of the core velocities can be calculated from Eqs. (41),
and thus the velocity field is determined according to Eq. (38)
completely. The corresponding shear distribution results from
Eq. (5). The average velocity of the Bingham gel in the (full)
channel calculated with the aid of Eqs. (38) and (35) is obtained
as

Vm = vw

2
= VL + VR

2
(42)

In other words, the average velocity of the Bingham gel is
equal to the average velocity of the two cores with solid body
motion on the one hand, and with the average velocity (16),
Vm = vw/2, of the Newtonian fluid, on the other hand.

5. Discussion

5.1. Existence range of the five-domain flow configurations

The key task in discussing the features of the five-domain
velocity field (38) of the Couette–Bingham flow, is to obtain
the solution of the transcendental equation (40) for C when the
values of all the other quantities involved are given. The main
results concerning the domain of existence of the solutions will
be given in a generally valid analytical form. However, in or-
der to be more specific, we chose for illustration the parameter
values H = 0.025 m, ρ = 1100 kg/m3, μ = 0.002 kg/(m s),
τ0 = 2.5 kg/(m s2) which are close to those of the example dis-
cussed by Bayazitoglu et al. [1]. Concerning the range of values
of β�T , we also assume with Ref. [1] that

0 � β�T � 0.22 (43)

For a given value of the wall velocity vw , the solution of
Eq. (40) for the ratio C/τ0 corresponds according to the in-
equalities (21) to the physical situation assumed in Fig. 2, only
when it satisfies the conditions

1 <
C

τ0
<

τ∗
τ0

(44)

It can be shown that the right-hand side of Eq. (40) is a real
quantity only in the range

C

τ0
� τ∗

τ0
− 1 (45)

and becomes imaginary for C/τ0 > (τ∗/τ0)−1. Thus, the phys-
ical situation of the five-domain flow configuration of Fig. 2, is
actually specified by the more restrictive conditions

1 <
C � τ∗ − 1 (46)

τ0 τ0
These inequalities require in turn that τ∗/τ0 � 2 which, accord-
ing to Eq. (9) of τ∗, implies that there always exists a smallest
value β�T ,

(β�T )min = 16τ0

ρgH
(47)

below which no five-domain flow configurations can exist. For
the minimum value (47) of β�T (i.e., for τ∗/τ0 = 2) the unique
solution of Eq. (40) is (/τ0 = 1, vw = 0). We mention that the
existence of a lowest bound for the initiation temperature of
the five-domain Bingham flow has already been predicted by
Bayazitoglu et al. [1]. With the present choice of the parame-
ters (and g = 9.81 m/s2) one obtains from Eq. (47) the value
(β�T )min = 0.148272.

The above flow features are illustrated in Fig. 3, where the
wall velocity vw has been plotted according to Eq. (40), as a
function of the ratio C/τ0 for four different values of β�T in
the range (β�T )min � β�T � 0.22. The dots at the lower end
of the curves mark the right limit of the existence domain of real
solutions, which are specified by the equality case of Eq. (46)
and have the coordinates (C/τ0, vw) = (1.42798,−0.60793),
(1.69775,−1.47747) and (1.96753,−2.61806) for β�T =
0.18,0.20 and 0.22, respectively. In the dots on the horizon-
tal axis, we recover the solutions discussed by Bayazitoglu
et al. [1], which correspond to the resting wall (vw = 0) and
which are located in the present case at C/τ0 = 1, 1.33610,
1.53265 and 1.72488, for β�T = 0.148272, 0.18, 0.20 and
0.22, respectively. Furthermore, the dots on the dashed ver-
tical line at C/τ0 = 1 mark according to Eq. (46) the left
limit of the existence domain of solutions corresponding to
the physical situation shown in Fig. 2. Their coordinates are
(C/τ0, vw) = (1,3.74338), (1,7.39278) and (1,11.5095) for
β�T = 0.18,0.20 and 0.22, respectively. Therefore the exis-
tence domain of the solutions extends for β�T > (β�T )min
both to positive and negative values of the wall velocity, i.e. to

−0.60793 � vw [m/s] < 3.74338 for β�T = 0.18

−1.47747 � vw [m/s] < 7.39278 for β�T = 0.20

−2.61806 � vw [m/s] < 11.5095 for β�T = 0.22 (48)

It is worth mentioning here that the dots on the dashed vertical
line at C/τ0 = 1 do not belong in fact to the existence domain of
the solutions with five different flow regions (the interval (46) is
open at its left side). This is also clearly seen in Fig. 2, where the
two outer flow domains disappear as τ0 approaches the value of
C, i.e. the five-domain structure of the flow field reduces to a
three-domain one.

5.2. Aiding and opposing effects of the applied shear

Concerning the effect of the shear induced by the moving
wall, the following aspects should be emphasized. In the case
vw > 0 the shear due to the upward moving hot wall does as-
sist the buoyancy forces in its neighborhood. Accordingly, the
velocity VL > 0 of the (left) hot core must become larger com-
pared to the case vw = 0. At the same time, the shear forces
induced by the upward moving hot wall are opposite to the
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Fig. 3. Plot of the wall velocity vw as a function of the ratio C/τ0 for the four indicated values of β�T , where (β�T )min = 0.148272.

Fig. 4. Plot of the velocity profiles (38) for β�T = 0.22 and the wall velocities vw = 1 m/s, vw = 0 and vw = −1 m/s, respectively. In the two former cases the
velocity field is bidirectional and in the latter one unidirectional.
buoyancy forces in the neighborhood of the cold right wall. Ac-
cordingly, the magnitude |VR| of the velocity VR < 0 of the
(right) cold core must become smaller compared to the case
vw = 0. Obviously, in the case vw < 0 of the downward mov-
ing hot wall, the opposite effects must occur. These features are
illustrated in Fig. 4 where the respective flow velocity profiles
are shown for the wall velocities vw = 1 m/s, vw = 0 and vw =
−1 m/s in the case β�T = 0.22. The corresponding solutions
of Eq. (40) are C/τ0 = 1.65052,1.724876 and 1.80501, respec-
tively. The left and right cores move in this case with velocities
(VL,VR) = (1.579275,−0.579275), (0.722768,−0.722768)

and (−0.103838,−0.896162), respectively. It is also worth em-
phasizing here that, while in the cases vw = 0 and vw = 1 m/s
the velocity field is bidirectional, in the case vw = −1 m/s it
corresponds to a unidirectional downward flow.
5.3. Critical wall velocities

Concerning the effect of the applied shear on the core veloc-
ities VL and VR illustrated in Fig. 4, it is of physical interest
to find the critical value of the wall velocity vw < 0 for which
the upward motion of the hot core gets stopped by the applied
shear, i.e. VL becomes zero. This value of vw can be found as
follows. One first substitutes VL = 0 in the first Eq. (41) and
one eliminates vw between this equation and Eq. (40). Then,
one solves the resulting equation

4S3+ − 2S3− + 3S2− − 1 = 0 (49)

for C/τ0. By substituting this value of C/τ0 = (C/τ0)crit in
Eq. (40), one obtains the desired critical value vw,crit of vw as

vw,crit = −υ Gr

12H
.S3+

∣∣∣∣ (50)

C/τ0=(C/τ0)crit



A. Barletta, E. Magyari / International Journal of Thermal Sciences 47 (2008) 811–819 817
Fig. 5. Plot of the velocity profile (38) for β�T = 0.22 and the critical value vw,crit = −0.871866 m/s of the wall velocity, where the hot core ceases to move.

Fig. 6. Plot of the velocity profile of the three-domain flow field configuration corresponding to the wall velocity vw = 11.5095 m/s for β�T = 0.22. In this case
the velocity of the right core is vanishing.
In this way, we arrive to the conclusion that the velocity
field is bidirectional for vw > vw,crit and unidirectional for
vw < vw,crit. In the present case with β�T = 0.22 one obtains
(C/τ0)crit = 1.794307 and vw,crit = −0.871866 m/s. The ve-
locity profile corresponding to vw,crit = −0.871866 is shown in
Fig. 5.

With respect to the existence of a critical wall velocity with
vw < 0, there immediately occurs the question whether a criti-
cal wall velocity with vw > 0 could exist, such that the down-
ward motion of the right cold core gets stopped, i.e. VR be-
comes zero. In contrast to the case vw < 0, this phenomenon is
not longer possible within a five-domain structure of the flow
field, but only for the solution for C/τ0 = 1 of Eq. (40) which,
as mentioned above, marks the crossover to a three-domain
structure. Therefore, the corresponding values of the wall veloc-
ity are associated with the points of the dashed vertical line of
Fig. 3. Thus, e.g. for β�T = 0.22, the corresponding velocity
of the upward moving hot wall is vw = 11.5095 m/s. The ve-
locity profile associated with this situation of the three-domain
flow field is shown in Fig. 6.

5.4. The width of the cores

It is also of physical interest to examine the dependence of
the width of the cores with solid body motion on the velocity
vw of the hot wall. First of all, it is seen that even for a non-
symmetric velocity field, the (dimensionless) widths δL = ξ2 −
ξ1 and δR = ξ4 − ξ3 of the left and right cores are always equal,

δL = δR ≡ δ = S− − S+
2

(51)

This result is an immediate consequence of Eqs. (22) and (23).
As an illustration, in Fig. 7 the change of δ has been plotted for
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Fig. 7. Change of the dimensionless width of the cores for β�T = 0.22, when, the wall velocity varies between −2.61806 and 11.5095 m/s (according to the third
equation (48)).

Fig. 8. Plot of the Bingham velocity profiles (38) (thick curves) and of the corresponding Newtonian ones (12) (thin curves) for β�T = 0.22 and the wall velocities
vw = 1 m/s, vw = 0 and vw = −1 m/s, respectively.
β�T = 0.22, when the wall velocity varies between −2.61806
and 11.5095 m/s (according to the third equation (48)). With
increasing values of vw , the width δ decreases from δmax =
0.410476 at vw = −2.61806 m/s to δmin = 0.214501, reached
at vw = 11.5094 m/s.

5.5. Comparison with the Newtonian flow

In Fig. 8 the velocity profiles of the five-domain Bingham
flows already shown in Fig. 4 (for β�T = 0.22 and the wall ve-
locities vw = 1 m/s, vw = 0 and vw = −1 m/s) are compared
to the velocity profiles of the corresponding Newtonian flows
described by Eq. (12) (with the same values of υ and Gr, but
τ0 = 0). While the Newtonian flows are always bidirectional,
the five-domain Bingham flows show this feature only above
the critical value of the wall velocity given by Eq. (50) (in the
present example, vw,crit = −0.871866 m/s). In the subcritical
velocity range, vw < vw,crit, the Bingham flows are always uni-
directional downward flows. According to Fig. 8, the maximum
and minimum velocities of the two type of flows also differ sub-
stantially from each other.

Furthermore it is of interest to compare the kinetic ener-
gies per unit volume (17) for the two type of flows. The re-
sults of this comparison for the velocity profiles plotted in
Fig. 8 are summarized in Table 1. As it is expected accord-
ing to Fig. 8, in the case of the Bingham flows the values of
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Table 1
Kinetic energies per unit volume KE/VOL [kJ/m3] of the Newtonian and Bing-
ham of respective velocity fields (12) and (38), for β�T = 0.22 and three
different wall velocities vw

vw = −1 m/s vw = 0 vw = 1 m/s

Newtonian flow 9.06 10.01 11.33
Bingham flow 0.207 0.227 0.648

KE/VOL [kJ/m3] are substantially smaller than in the New-
tonian case (in the present example one order of magnitude
smaller.

6. Summary and conclusions

The effect of an externally applied shear stress on the free
convection flow of a Bingham fluid in a parallel plane verti-
cal channel has been investigated by analytical and numerical
methods. The forcing shear stress was induced (in our math-
ematical model) by a uniform vertical motion of the hot wall
in its own plane. The physically most interesting five-domain
configuration of the velocity field of the emerging buoyant
Couette–Bingham flow has been examined in detail. The main
results of the paper can be summarized as follows.

1. The velocity field of the laminar Couette–Bingham flow
has been given in a closed analytical form and its whole
domain of existence has been found (see Eqs. (38), (41),
(46) and Figs. 2 and 4).

2. For the initiation temperature of the five-domain Bingham
flow predicted by Bayazitoglu et al., [1], a generally valid
formula has been given (see Eq. (47) and Fig. 3).

3. The core velocities with rigid body motion of the Bing-
ham material depend on the wall velocity sensitively (see
Fig. 4). There exists a critical downward pointing wall ve-
locity (given by Eq. (50)) for which the upward motion of
the hot core is dropped. In this case the upward directed
buoyancy force and the downward directed applied shear
compensate each other exactly (see Fig. 5). The downward
motion of the cold core, by contrast, can be stopped by an
upward directed applied shear only within a three-domain
flow regime (see Fig. 6). The hot and cold cores always
possess the same width which, however, decreases with in-
creasing wall velocity rapidly (see Fig. 7).

4. The velocity profile as well as the kinetic energy per unit
volume of a Couette–Bingham flow differ from those of the
corresponding Newtonian flows substantially (see Fig. 8
and Table 1).

We may conclude therefore, that the interplay between the
buoyancy forces and the applied shear, can affect both the con-
figuration of the flow field as well as the magnitude of the core
velocities of the Bingham fluid sensitively. A future research
opportunity is the investigation of the effect of an applied stress
on the mixed convection Bingham flow considered for resting
walls in an earlier paper of Patel and Ingham [3], as well as to
the case of annular ducts [4,5].
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